Contact Us
SaaS Log InXRay Login
Machine Learning

Machine learning detects importance of land stewardship in conservation policy

Nastel Technologies®
February 28, 2019

Machine learning detects importance of land stewardship in conservation policyA machine learning algorithm finds success in cooperative forest management policies that allow greater autonomy by smallholder farmers.

At the southern tip of the Himalayas, farmers in the Kangra region of India’s Himachal Pradesh graze cattle among rolling hills and forests. The forests, under management by the state or farmer cooperatives, are thriving. But a new University of Illinois study shows, unlike state-managed forests, farmer cooperatives directly benefit both forest health and farmers.

The finding itself may not be new — previous research and social-ecological theory suggest that land ownership leads to enhanced stewardship and improved environmental outcomes — but the study confirmed the conclusion in a new way, using machine learning.

“This is the first application of machine learning algorithms in natural resources policy and governance, evaluating how policies actually work on the ground,” says Pushpendra Rana, postdoctoral research associate in the Department of Natural Resources and Environmental Sciences at U of I and lead author on the study published in Environmental Research Letters.

Machine learning harnesses modern computing power to explore patterns in large datasets, an advantage over traditional policy impact evaluations. The efficacy of environmental policy is often tested empirically, with experimental “treatments” (areas with new policies in place) and “controls” (business as usual). Researchers physically measure outcomes like tree growth or soil health and make comparisons between treatments and controls. The work can yield accurate estimates of impact but is time consuming and provides only a single snapshot in time.






This article originally appeared on  To read the full article, click here.






Nastel Technologies uses machine learning to detect anomalies, behavior and sentiment, accelerate decisions, satisfy customers, innovate continuously.  To answer business-centric questions and provide actionable guidance for decision-makers, Nastel’s AutoPilot® for Analytics fuses:

  • Advanced predictive anomaly detection, Bayesian Classification and other machine learning algorithms
  • Raw information handling and analytics speed
  • End-to-end business transaction tracking that spans technologies, tiers, and organizations
  • Intuitive, easy-to-use data visualizations and dashboards

If you would like to learn more, click here

Nastel Technologies is the global leader in Integration Infrastructure Management (i2M). It helps companies achieve flawless delivery of digital services powered by integration infrastructure by delivering tools for Middleware Management, Monitoring, Tracking, and Analytics to detect anomalies, accelerate decisions, and enable customers to constantly innovate, to answer business-centric questions, and provide actionable guidance for decision-makers. It is particularly focused on IBM MQ, Apache Kafka, Solace, TIBCO EMS, ACE/IIB and also supports RabbitMQ, ActiveMQ, Blockchain, IOT, DataPower, MFT, IBM Cloud Pak for Integration and many more.


The Nastel i2M Platform provides:


Write a comment
Leave a Reply
Your email address will not be published. Required fields are marked *
Comment * This field is required!
First name * This field is required!
Email * Please, enter valid email address!

Schedule your Meeting


Schedule your Meeting


Schedule a Meeting to Learn More